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Abstract

Event cameras are powerful new sensors able to capture
high dynamic range with microsecond temporal resolution
and no motion blur. Their strength is detecting brightness
changes (called events) rather than capturing direct bright-
ness images; however, algorithms can be used to convert
events into usable image representations for applications
such as classification. Previous works rely on hand-crafted
spatial and temporal smoothing techniques to reconstruct
images from events. State-of-the-art video reconstruction
has recently been achieved using neural networks that are
large (10M parameters) and computationally expensive, re-
quiring 30ms for a forward-pass at 640× 480 resolution on
a modern GPU. We propose a novel neural network archi-
tecture for video reconstruction from events that is smaller
(38k vs. 10M parameters) and faster (10ms vs. 30ms) than
state-of-the-art with minimal impact to performance.

Videos and Datasets:
https://cedric-scheerlinck.github.io/firenet

1. Introduction
Event cameras [19] are lightweight, fast sensors that

have distinct advantages over conventional cameras: high
temporal resolution, high dynamic range and no motion
blur, making them ideal for robotic applications. Their
raw output is a sequence of asynchronous events (discrete
pixel-wise changes in brightness) corresponding to changes
in scene illumination. To extract useful information from
events, e.g. optic flow or classification, they are typically
converted to an intermediate representation such as a time-
surface [6, 42], event image [37], 3D voxel-grid [13] or
brightness image [33, 38, 35]. Brightness images, or video,
are a useful representation that act as an interface between
event cameras and conventional frame-based computer vi-
sion. For example, Rebecq et al. [33] show that conven-
tional frame-based methods achieve state-of-the-art perfor-

mance on event reconstructed images for classification and
visual inertial odometry compared to dedicated event-based
algorithms. Additionally, image reconstruction allows hu-
man visualization and interpretation of events, giving us an
intuition of the rich information encoded by events.

The introduction of machine learning to event cameras
has caused a proliferation of works, achieving state-of-the-
art results in optical flow [49, 50], 6-DOF pose relocaliza-
tion [27], steering prediction [22], classification [13], seg-
mentation [1], image reconstruction [33] and more. These
methods typically convert raw events into time-surfaces,
event images or voxel-grids to be passed to a convolutional
neural network (CNN). Large CNN models can be mem-
ory and computationally intensive, consuming power and
hampering the low latency of event cameras. This makes
it harder to deploy large models on embedded platforms or
IoT applications with power and memory constraints, where
event cameras are ideal candidates due to their low power
and bandwidth consumption. Reducing the model size can
improve performance by reducing (i) memory footprint, (ii)
FLOPs and power consumption and (iii) latency.

In this work, we introduce FireNet (Fig. 1): a novel
neural network architecture that performs fast image recon-
struction from events. FireNet is significantly smaller than
state-of-the-art (E2VID) [33], requiring fewer parameters
(38k vs 10M), less memory (0.16Mb vs 43Mb) and fewer
FLOPs (12.6G vs 147.2G), and runs three times faster than
E2VID [33] on a modern GPU. FireNet is a fully convolu-
tional network that relies on recurrent connections to build
a state over time, allowing a much smaller network that re-
uses previous computed results, showing exciting potential
for very small recurrent networks that run fast.

2. Related Works
Early research into image reconstruction from events

did not use machine learning, instead applying SLAM [11,
16, 17, 32], optimization [3], regularization [35, 26], tem-
poral filtering [38, 39] and combining frames with events
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Figure 1. FireNet architecture. The input is an event tensor with 5 temporal bins. The network consists of convolutional layers (H, P),
convolutional gated recurrent units (G1, G2) and residual blocks (R1, R2). Every layer uses ReLU activation except the final layer (P).

[8, 29, 28, 38, 41, 21]. SLAM-like approaches aim to si-
multaneously estimate ego-motion and a brightness gradi-
ent map [11, 16, 17, 32], that can be upgraded to intensity
via Poisson integration. Another approach is to simultane-
ously optimize optical flow and intensity [3]. Since events
represent brightness changes, they can be integrated as long
as noise is filtered out e.g. via spatial smoothing based on
a time-surface [35, 26] or temporal smoothing [38, 39, 5].
Finally, events can also be considered in conjunction with
image frames, either using events to warp images [21, 41],
or combining events and frames directly [8, 38, 29, 28].

The first learning approach to image reconstruction from
events was proposed by Barua et al. [4], who used a simu-
lator to learn a sparse patch-based dictionary to match event
patches to gradient patches. They performed image recon-
struction via Poisson integration and showed that their ap-
proach could be used for face detection. Sparse dictionary
learning was also used in [47] to reconstruct images from
retinal event trains. Generative adversarial networks were
used in [30, 24] to generate realistic images from events.
Wang et al. [46] proposed fusing events and frames with
a CNN. Rebecq et al. [33] showed that a large amount of
simulated data could be used to train a network (E2VID)
end-to-end to reconstruct high speed, high dynamic range
video from events, achieving state-of-the-art results, later
improved in [34]. E2VID is a fully convolutional, recurrent
UNet architecture inspired by [36, 49].

One potential downside to conventional neural networks
is computational cost, putting them at odds with event cam-
eras’ natural low-power and low-latency. Spiking neural
networks are theoretically more efficient in terms of power
consumption and compute time, however, realizing these
gains requires specialized algorithms and hardware such as
IBM’s TrueNorth chip [23]. Other works have proposed
modifications to standard network architectures aimed at
exploiting the asynchronous/serial nature of event cameras

such as asynchronous convolutional neural networks [9] or
recursive max pooling [40]. Hardware accelerators [12] and
sparse convolutions [14] exploit sparsity in the input and
hidden layers of networks, reducing the number of FLOPS
and memory footprint by skipping zero (or small) tensor el-
ements.

In this work, we aim to improve computational efficiency
by proposing a novel architecture drastically smaller than
E2VID1 [33, 34]. We achieve a 280× reduction in parame-
ters, 10× reduction in FLOPs and 3× speedup compared to
E2VID while only incurring a minor drop in performance.

3. Method
3.1. Input Representation

The input to our network is a H × W × B event ten-
sor E(x, y, t) proposed by [50], where H,W are the sensor
height and width andB is the number of temporal bins. The
event tensor is populated using trilinear voting (interpola-
tion) where each event (xi, yi, ti, pi) contributes its polarity
to its two closest temporal bins according to:

E(x, y, tn) =
∑
i

pi max (0, 1− |tn − t∗i |), (1)

t∗i =
(ti − tmin)

(tmax − tmin)
(B − 1)

where n is the temporal bin index, pi is the polarity and t∗i
is the normalized timestamp of the ith event. We useB = 5.

At runtime we pass consecutive, non-overlapping event
tensors with a fixed number of N events. Thus, tmin and
tmax may be different for each event tensor, depending on
the timing of events. Our input representation can be in-
terpreted as adaptively rescaling the temporal dimension,

1We compare against the improved version of E2VID [34]. Code:
https://github.com/uzh-rpg/rpg e2vid

https://github.com/uzh-rpg/rpg_e2vid


i.e. the network never sees absolute timestamps, only rela-
tive event timings. This scheme can be relaxed e.g. having
a variable number of events per event tensor. In addition,
we normalize the non-zero entries in E(x, y, t) to have zero
mean and unit norm, mitigating the impact of unbalanced
ON/OFF contrast thresholds, and making the network ro-
bust against different magnitudes of contrast threshold.

3.2. Architecture

We use a fully convolutional recurrent neural network
(Fig. 1). All layers use single-strided (no downsampling)
3 × 3 convolutions except the final layer which is 1 × 1.
The head unit (H) consists of a 16-channel convolution
(y = w ∗ x + b) with ReLU activation. The convolutional
gated recurrent units (G1, G2) consist of a 16-channel con-
volution with ReLU activation followed by a gated recur-
rent unit as described in [2]. We choose GRUs instead of
LSTMs because they have been shown to exhibit similar
performance [10] while having less parameters (two gates
instead of three). The residual blocks (R1, R2) use 16-
channel convolutions with ReLU activation and skip con-
nections as described in [15]. The final prediction layer (P)
is a 1 × 1 single-channel convolution. The output is one
image per input event tensor. Table 1 shows key differences
between our network and E2VID [33].

3.3. Training

To make a fair comparison to E2VID, the exact same
training and validation data was used. The data was gen-
erated by the event simulator ESIM [31], and consists of
1,000 sequences of 2 seconds each (950 training, 50 valida-
tion). MS-COCO images [20] were mapped to a 3D plane
and random 6-DOF (simulated) camera motions were used
to trigger events. To simulate contrast threshold mismatch
and refractory, contrast threshold values (ON/OFF) for each
sequence were drawn from a normal distribution with mean
µ = 0.18 and standard deviation σ = 0.03 and a refractory
period of 1ms was applied after each event.

As in [34], we used both (i) a reconstruction loss that
measures the difference between the reconstruction and
groundtruth image, and (ii) a temporal loss that penalizes
differences between consecutive reconstructed images. We
used Perceptual Similarity (LPIPS) [48] to a groundtruth
image as the reconstruction lossLR

k = d(Îk, Ik), where d is
the LPIPS distance function, Îk is the kth reconstructed im-
age and Ik is the groundtruth image. The groundtruth image
was selected by matching its timestamp to the latest event in
our event tensor, thus, discouraging the network from pre-
dicting images in the past. We used the temporal consis-
tency loss described in [34] that aligns two successive re-
constructed images based on the optical flow between them
and measures a photometric error LTC

k = c(Îk−1, Îk),
where c is the temporal consistency function.

Table 1. Network overview. Compared to E2VID [33, 34], our
network has 280× fewer parameters, consuming only 0.37% of
the memory.

E2VID Ours

No. parameters (k) 10700 38

Memory (Mb) 43 0.16

Downsampling yes no

Recurrent units LSTM GRU

Max. kernel size 5× 5 3× 3

The final loss is a weighted sum of reconstruction and
temporal losses over L consecutive images

L =

L∑
k=0

LR
k + λTC

L∑
k=L0

LTC
k , (2)

where L = 20, λTC = 2 and L0 = 10. We used the ADAM
optimizer [18] with default parameters, learning rate 1e-4,
and trained for 1000 epochs.

4. Results
4.1. Overview

Our network is 280× smaller than E2VID [33, 34]
(Tab. 1) with only 38k parameters (0.36%) and consuming
only 160kb of memory (0.37%). This gives us a 3× speedup
on GPU, 4× on CPU and 10× reduction in the number of
FLOPs (Tab. 2). Our accuracy on the event camera dataset
[25] is comparable to E2VID (Tab. 3). Qualitative compar-
ison confirms that our reconstructed images are of a similar
quality to E2VID (Fig. 3), though in some challenging sce-
narios we perform slightly worse than E2VID (Fig. 6). We
compare against improved E2VID [34] for all experiments.

4.2. Computational Performance

Table 2 compares the computational cost of our method
against E2VID. We used an NVIDIA Titan Xp GPU and an
Intel 3.20 GHz i7-6900K CPU for all experiments. To eval-
uate computational cost, we measured the compute time of
a forward-pass through the network at various image sen-
sor resolutions on both GPU and CPU. We selected resolu-
tions of common event cameras such as the DAVIS240 [7],
DAVIS346 [44], Samsung, Prophesee and CeleX sensors.
We also report the number of floating point operations per
forward-pass (FLOPs) at each resolution, which is related
to power consumption. Note that E2VID and our method
are agnostic to the number of events per forward-pass, that
is, a forward-pass will take the same amount of time if the
input event tensor contains zero or one million events. Our



Table 2. Computational cost. We report inference time on GPU and CPU, and the number of FLOPs for a single forward-pass at common
sensor resolutions.

Resolution
GPU (ms) CPU (ms) FLOPs (G)

E2VID Ours E2VID Ours E2VID Ours

240× 180 5.52 1.89 84.98 22.86 21.2 1.8

346× 260 10.17 3.22 183.79 40.96 44.5 3.7

640× 480 30.88 10.15 687.10 264.39 147.2 12.6

1280× 720 93.34 31.01 2235.60 1039.49 441.7 37.8

method performs three times faster than E2VID on GPU,
and up to four times faster on CPU, requiring less than one
tenth the number of FLOPs.

4.3. Accuracy

We evaluated the accuracy of our method against
DAVIS240C [7] frames in the event camera dataset [25]
(Tab. 3, Fig. 3), and compared against several competi-
tive methods: high-pass filter (HF) [38], manifold regu-
larization (MR) [35] and E2VID [33, 34]. We discarded
sections with poor frame quality, leaving seven sequences
with 1,670 groundtruth frames. Given a pair of successive
image frames (∼20Hz for the event camera dataset [25]),
we took all events in between the frames and constructed
an event tensor as specified in 3.1, creating a sequence of
event tensors for each dataset sequence. We reconstructed a
video for each sequence and compared against groundtruth
frames. For all methods, we matched the timestamp of the
latest event used in each reconstructed image to the nearest
groundtruth frame with a tolerance of 1ms. For HF and MR,
we used code provided by the authors and manually tuned
the parameters to get best results possible. For HF we addi-
tionally applied a 5×5 bilateral filter with σ = 25 to smooth
high-frequency noise, which improved results of HF in all
metrics. To ensure the intensity values lay within a similar
range, we applied local histogram normalization to both the
output and groundtruth frames. We compared reconstructed
images against groundtruth frames using the metrics: mean
squared error (MSE), structural similarity (SSIM) [45] and
perceptual similarity (LPIPS) [48].

Table 3 shows that our method performs favorably com-
pared to hand-crafted methods HF and MR. We achieve a
40% decrease in mean squared error, 20% increase in struc-
tural similarity and 20% improvement in perceptual similar-
ity. At the same time, we quantitatively match performance
of E2VID for all metrics on the event camera dataset [25],
though there are minor qualitative defects for some chal-
lenging scenarios (see Fig. 6).

4.4. Qualitative Evaluation

Figure 2 shows qualitative comparison to [24]. [24] used
a generative adversarial network (GAN), trained on a mix-

GAN Ours DAVIS frame
Figure 2. Left: GAN [24] appears less sharp and exhibits arte-
facts in textureless regions (note: rows 2, 3 were used in training).
Middle: our method looks cleaner but still suffers from very noisy
events e.g. Sun (top). Right: the DAVIS frame has lower dynamic
range than events, evident in the reconstructions of both methods.

ture of real and synthetic data. While our network was
trained exclusively on synthetic data, GAN was trained on
data from the event camera dataset [25] (rows 2, 3) (i.e. the
network has seen these sequences at train time), thus, we
did not include quantitative comparison out of fairness. Im-
ages reconstructed with GAN appear less sharp, and contain
artefacts in textureless regions of the scene (where there are
no events). In challenging sequences, such as Sun (from
[38]), there are many noise events that translate into arte-
facts for both GAN and ours, however, our method appears
less impacted. Note that both methods appear to contain
more information than the oversaturated DAVIS frame.

Figure 4 shows results on the High Speed and HDR
Dataset2 [34], demonstrating that our network can gener-
alize to a different sensor (Samsung DVS Gen3 [43]). Each
sequence was reconstructed using 50k events per input ten-
sor (higher due to the higher sensor resolution: 640×480
vs. 240×180). Local histogram equalization was applied to
improve the visual contrast of the images.

2Available at: http://rpg.ifi.uzh.ch/E2VID.html

http://rpg.ifi.uzh.ch/E2VID.html


Table 3. Comparison to state-of-the-art image reconstruction methods on the Event Camera Dataset [25].

Dataset
MSE SSIM LPIPS

HF MR E2VID Ours HF MR E2VID Ours HF MR E2VID Ours

dynamic 6dof 0.10 0.05 0.14 0.12 0.39 0.52 0.46 0.47 0.54 0.50 0.46 0.44

boxes 6dof 0.08 0.10 0.04 0.04 0.49 0.45 0.62 0.64 0.50 0.53 0.38 0.37

poster 6dof 0.07 0.05 0.06 0.04 0.49 0.54 0.62 0.65 0.45 0.52 0.35 0.34

shapes 6dof 0.09 0.19 0.04 0.02 0.50 0.51 0.80 0.79 0.61 0.64 0.47 0.46

office zigzag 0.09 0.09 0.03 0.04 0.38 0.45 0.54 0.54 0.54 0.50 0.41 0.40

slider depth 0.06 0.07 0.05 0.05 0.50 0.50 0.58 0.59 0.50 0.55 0.44 0.41

calibration 0.09 0.07 0.02 0.04 0.48 0.54 0.70 0.66 0.48 0.47 0.36 0.37

Mean 0.08 0.09 0.05 0.05 0.46 0.50 0.62 0.62 0.52 0.53 0.41 0.40

(a) HF (b) MR (c) E2VID (d) Ours (e) Ground truth
Figure 3. Qualitative comparison against state-of-the-art methods on the event camera dataset [25]. Our method performs comparably to
E2VID [33, 34], and produces higher quality images than HF [38] and MR [35].

4.5. Recurrent Connection Ablation

Recurrent connections in a network give it the ability to
build a hidden state h(t) that can be maintained and im-
proved over time. Given temporal sequences of training
data, the network learns some form of temporal integration,
re-using previous computed results. Figure 5 shows that
E2VID can reconstruct images from batches of 10k events
per input tensor without recurrent connections. We believe
this is because its large size and receptive field allows it to
spatially propagate information from events (edges). How-
ever, smaller models such as ours cannot reliably recon-
struct images without recurrent connections because of a
limited receptive field (maximum 15× 15 in our case). Be-
cause our network is fully convolutional, pixels in the pre-

diction layer can only see events within their receptive field.
Thus, we can conclude that recurrent connections are the
primary driver enabling a smaller network.

4.6. Limitations

In challenging scenarios such as very fast motions, and
initialization, FireNet exhibits defects such as smearing, or
incomplete reconstruction in places with no events. Fig-
ure 6 shows selected challenging scenes where FireNet arte-
facts are apparent, while E2VID [34] typically does a better
job. To highlight smearing artefacts we used a fixed time-
window of 50ms per input event tensor for both methods.
Using a smaller time-window or fixed number of events per
input tensor may decrease smearing for fast motions.



(a) Gnome (b) Mug (c) Air balloon (d) Water balloon
Figure 4. High speed phenomenon from the High Speed and HDR Dataset [34]. (a) and (b) are moments after a bullet impact from a gun.
(c) and (d) are moments after an air and water balloon are popped. The water (d) initially retains the original shape of the balloon as it falls.

FireNet (small network) (ours)Recurrent

No recurrent

Iteration = 1 3 5 7 9
E2VID (large network)Recurrent

No recurrent

Time 7−→
Figure 5. Recurrent connection ablation study. Image is initialized at zero. Top: small network (ours) relies on recurrent connection to
build hidden state over time. When recurrent connection is disabled (second row), the network fails, indicating that recurrent connections
are a key component. Bottom: While recurrent connections help stabilize video (third row), large networks (E2VID [33, 34]) are still able
to reconstruct images without recurrent connection (fourth row).

5. Conclusion
We have presented FireNet, a fast, lightweight CNN that

reconstructs images directly from events. Our method per-
forms almost as well as state-of-the-art (E2VID [33, 34]) at
a fraction of the computational cost, yielding a 3× speedup,
10× reduction in FLOPs with 280× fewer parameters. We
showed that recurrent connections are a key component en-
abling smaller networks because it allows them to build and
improve a hidden state over time, re-using previous com-
puted results. We believe FireNet shows exciting potential

for fast, lightweight recurrent networks for event process-
ing, and that the reconstructed images reveal an exciting
depth of information that can be unlocked from events with
a surprisingly small network.
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